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1 Introduction

Over the past few years, the average global temperature is significantly increasing

due to carbon dioxide (CO2) and other human emissions into the atmosphere. The

commercial and residential buildings are one of the largest contributors to global

CO2 emissions. During the building operations, significant energy is wasted due to

inefficient utilization of resources or misuse of appliances and equipment in disrepair.

Strategies to help increase energy efficiency in buildings are needed.

Anomaly detection is one of the strategies to identify appliances in a state of

disrepair or used improperly. Identify these abnormal behaviour can reduce the huge

operational costs. It also can create alerts to either repair an appliance or suggest a

more optimal use [8] [6].

1.1 Define Anomalies

There is no clear definition of the anomaly. Harkins defines an outlier as “An outlier

is an observation that deviates so much from other observations as to arouse suspicion

that it was generated by a different mechanism”. Anomaly detection techniques

are widely used in various areas like fraud detection, intrusion detection, industrial

damage detection, personal health, and sensor networks. Anomalies commonly are

classified into three categories [5]:

• Point Anomalies. A single instance of data is anomalous if it is too far off from

the rest.

• Contextual Anomalies. The abnormality is context-specific. For example,

spending 100 dollars on food during the holiday season is normal, but maybe

odd in weekdays.

• Collective Anomalies. A set of data instances collectively helps in detecting

anomalies.

In this paper, we focus on the detection of contextual and point anomalous energy

consumption in individual households.
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1.2 Challenges with Anomaly Detection

There are two main challenges in detecting anomalies. The first challenge is the

lack of labeled data to train an algorithm for detecting anomalous behaviours. It is

expensive and time-consuming to obtain ground truth data since it requires large

amount of manual work and hiring experts is costly. Besides, injecting artificial

anomalies becomes necessary to evaluate different anomaly detection approaches.

In this paper, we choose to use unsupervised anomaly detection techniques due to

the lack of labeled data. The second challenge is the high dimensionality of time

series data. Commonly used distance functions (e.x. Euclidean distance) can not well

represent the actual distance between each pair of points in high-dimensional space.

1.3 Paper Contributions

In this paper, we make the following contributions:

• We investigate different feature construction methods for time series data.

• We compare the performance of different unsupervised anomaly detection

methods.

1.4 Paper Organization

Rest of the paper is designed as follows: Section 2 explains the related work. We

describe the detail of our work in section 3. The experiment setup and results are

discussed in section 4. At the end, we conclude our paper and show some future work.

2 Related Work

Anomaly detection raises more and more attentions in recent years, with surveys

appearing covering: anomaly detection [4], novelty detection [15], and outlier detection

for temporal data [9]. We now focus on the most related work to our project.
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2.1 Power Consumption Analytics

For power consumption analytics, different applications have been researched.

Zhenjun et al. [13] focus on cluster analysis strategy to identify typical daily heating

energy usage profiles of higher education buildings. Gowtham et al. [2] try to

understand campus-scale power consumption. The anomaly detection always is a hot

topic in analyzing power consumption. Jakkula and Cook [11] compare statistical

with unsupervised clustering-based techniques for detecting periods of unexpected

consumption. Jaime and Bo [17] analyze the feasibility of applying outliers detection

algorithms for enhancing the security of AMI through the detection of electricity

theft in a variety of types. Megha et al. [8] propose two novel methods to generate

labeled data for abnormal energy consumption and investigate different performance

metrics used in anomaly detection.

2.2 Unsupervised Anomaly Detection

The typical assumption in the unsupervised setting is that outliers represent

potential anomalies. In the density-based outlier detection method, a point is identified

as an outlier if its density is relatively much lower than that of its neighbours. Breunig

et al. [3] introduce a degree of an object being an outlier – local outlier factor (LOF),

which measures how isolated the object is with respect surrounding neighbourhood.

He et al. [10] propose the cluster-based local outlier factor (CBLOF) which combines

distance-based unsupervised clustering and local outlier factor. Liu et al. [12] propose

a method called Isolation Forest (iForest), which detects anomalies purely based on

the concept of isolation without employing any distance or density measure. Finally,

Fan et al. [7] investigate the potential of autoencoders in detecting anomalies in

building energy data.

3 Approach

We can formally define the task addressed in this paper as follows:
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Figure 1: The outline of project.

Given: A time series T = {(t1, v1), ..., (tn, vn)} , where ti is a timestamp and vi

is the power consumption at time ti, for a single household.

Do: Identify hourly periods of anomalous power consumption in T.

The outline of the whole project is illustrated in Figure 1.

3.1 Dataset

The dataset used in this project is collected from Dataport (Pecan Street) [14].

It consists of 239 houses located in Texas, US. Each house has meter-level data,

which are sampled at 1 minute intervals. We are using the whole 2018 year power

consumption data from four houses.

3.2 Preliminary Data Analysis

Each household’s average energy consumption and the standard deviation are

presented in Table 1. The households’ average energy consumption range from 1.098

kWh to 1.459 kWh per minute with standard deviations from 0.958 kWh to 1.665
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Table 1: Average energy consumption per minute and standard deviation for each
household

House Mean (kWh) STD (kWh)

370 1.459 1.364
3506 1.098 0.958
4830 1.252 1.665
2814 1.294 1.417

kWh.

Two weeks of energy consumption for four households are shown in Figure 2. We

can observe that the power consumption patterns of the households are distinctive.

Since different house has a different set of characteristics such as size, location, amount

of family members, we choose to perform anomaly detection on a house-by-house

basis based on above observation.

The energy consumption of House 370 in the same weekday (Tuesday) is shown

in Figure 3. As we can see, these two days’ power consumption follow similar usage

pattern. For example, they both consume a large amount of energy from 11:00-13:00

while they keep low consumption from 3:00-7:00.

3.3 Preprocessing

This phase includes two steps — imputing missing data and data segmentation.

At the first step, we check the data incompleteness that may arise due to network

or sensor failure. We apply linear interpolation to fill these missing values.

At the second step, within each house, we subdivide the data T (power consumption

of each house) into non-overlapping windows of one hour (i.e., 00:00-01:00, 02:00-03:00,

etc.). The reason why we work on the house-level is based on the observation of

Figure 2 in the “Preliminary Data Analysis” section. We divide the data within a

house into the non-overlapping one hour windows for two reasons. First, the time of

day is an important feature that is simplicity captured by this partition. Second, it is

a proper unit in which enough data is available for house owners to identify what
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Figure 2: Energy consumption of four different households from February 13-27, 2018.

Figure 3: Tuesday Energy consumption in House 370 from Feb. 06 and Feb. 13.
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(a) Type I Anomaly (b) Type II Anomaly

Figure 4: This figure shows two types of anomaly.

appliances are in disrepair or improperly used.

3.4 Anomaly Data Injection

In order to evaluate different approaches, we manually inject artificial anomaly

consumption into our data. Since we construct 24 window groups (one for each one

hour interval) within each house, we replace some of normal data in each window

group with abnormal consumption data. In each window group, we keep 2% abnormal

power consumption and 98% normal power consumption. Above operations are based

on assumption that all the origin data are normal data before our injection. There

are two types abnormal consumption data.

• Type I Anomaly: This type of anomaly which appears because of faulty

readings generated by a sensor. In order to simulate this kind of anomaly,

we add unexceptional spikes into the one hour windows we choose to become

anomalous. The spike means unusual high power usage occurring within short

time intervals.

• Type II Anomaly: We count a power consumption pattern that rarely or

never happens in a specific period as an anomaly in that period (window group).

This type of anomalies is contextual anomalies. Since it is complex to simulate

this kind of anomalies, we use the one hour windows from different houses

7



and different time periods to replace the one hour windows we choose to be

anomalous.

These two types of anomalies often are observed during the process of data collection.

Figure 4 shows the examples of two types of anomaly.

3.5 Feature Construction

Feature construction is a domain-specific task that transfers each one hour window

into a feature vector that describes the characteristics of the signal during that

particular window. Different classes of features are constructed as follow:

(a) Summary statistic: We compute the following eight statistical features: max,

min, median value, standard deviation, skewness, kurtosis, and entropy.

(b) Descriptive features: We consider three categorical features: the day of the week,

the month of the year, and whether a day is a US holiday. These categorical

features are dealt with using one-hot encoding.

(c) Fast Fourier transfrom (FFT): We compute the frequency spectrum of each one

hour window. Given a one hour window x[n], for n = 1, ..., N , (For one minute

granularity, N will be 60 in our project) its frequency spectrum is computed as

X[k] =
N∑

n=1

x[n] ∗ exp(−j2π(k − 1)
n− 1

N
), 1 ≤ k ≤ N

Let Y [k] = |X[k]|, k = 1, ..., N denote its magnitude.

Since traditional distance functions like Euclidean distance function do not work

well in high dimensional space, we use principal component analysis (PCA) technique

for dimensionality reduction.

In our experiment, unless otherwise specified, the default feature construction

method we use is FFT+PCA(3), which means that we first compute the frequency

spectrum of one hour window and then reduce dimensionality to 3 by applying PCA.
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3.6 Unsupervised Outlier Detection Algorithms

As we describe data segmentation in the “Preprocessing” section, we construct

24 window groups (one for each one hour interval) within each house. We detect

anomalies separately in each window group. The grouping is motivated by the

importance of time of day as a factor governing energy consumption. Labeling is

always done on the level of window, so construction anomalies are always a multiple

of the window length. This is analogous to multi-instance learning: if any behaviour

in a window is anomalous, then the window is anomalous.

We compare the performances of anomaly detection in following approaches:

• LOF is a density based unsupervised outlier detection technique [3].

• CBLOF is a cluster based unsupervised outlier detection technique [10].

• IF (iForest) is a method that explicitly isolates anomalies rather than profiles

normal instances [12].

• iNNe is an anomaly detection technique by isolation using nearest neighbour

ensemble [1].

• kNNo is a distance-based unsupervised outlier detection technique (in other

work also referred to as kNN) [16].

These approaches are selected based on recent extensive empirical evaluations of

unsupervised outlier detection algorithms.

4 Experiment

We report the results on the evaluation of the approaches. We answer the questions:

Q1: Which approach does perform best in anomaly detection?

Q2: How do different feature construction methods contribute to the performance?

Q3: How do approaches perform on different types of anomalies?
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4.1 Experimental Setup

4.1.1 Experimental setup

The goal of the experiment is to evaluate the performance of different anomaly

detection methods. We perform the following experiment for each of the four houses

separately. First, we get 24 window groups by preprocessing the power consumption

data T (one minute granularity). Second, we inject two different types of anomalous

power consumption separately as we describe in the “Anomaly Data Injection” section

(we only inject one specific type of anomalies in each time). Third, we use different

feature construction methods to convert each one hour window to feature vector.

As we mention above in section 3.5, the default feature construction method is

FFT+PCA(3). Finally, we apply different approaches to detect anomalies separately

in each window group. For each approach, we pick the parameter setting that

maximizes area under the ROC curve (AUC).

4.1.2 Evaluation metrics

Each anomaly detection method outputs a ranking over the one hour windows

within each window group from most to least anomalous. We evaluate these rankings

by computing the Precision, Recall, True negative rate (TNR), False positive rate

(FPR), F1 Score and AUC, which are discussed in [8]. The Precision, Recall, TNR,

FPR, F1 Score are computed based on the setting that the number of anomalous

windows is 2% of the total windows within each window group.

4.1.3 Hyperparameters

We use grid search for each approach parameter. LOF and kNNo each have one

parameter k: the number of nearest neighbour, which is optimized over interval [1,30].

IF and iNNe both have parameters sub-sampling size ψ and number of estimators t.

For IF, we set sub-sampling size to 256 and number of estimators to 100 as the authors

suggest [12]. For iNNe, we choose sub-sampling size from set {2, 8, 64, 256} and also

set number of estimators to 100. CBLOF has three parameters: the number of clusters
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nc which is optimized over [1,30], and two parameters needed by “FindCBLOF” are

set to 90% and 5 separately [10].

4.2 Result

Table 2: Average evaluation metric of identify Type I anomalies for each method
across all 96 window groups. The best result of each method is shown in

bold.

Method Precision↑ Recall↑ TNR↑ FPR↓ F1 Score↑ AUC↑

LOF 0.4414 0.5045 0.9875 0.01248 0.4708 0.9003
IF 0.4089 0.4673 0.9868 0.01321 0.4361 0.9108
iNNe 0.4453 0.5089 0.9876 0.01240 0.475 0.9108
kNNo 0.4180 0.4777 0.9870 0.01301 0.4458 0.9160
CBLOF 0.4115 0.4702 0.9868 0.01315 0.4389 0.9130

Table 3: Average evaluation metric of identify Type II anomalies for each method
across all 96 window groups. The best result of each method is shown in

bold.

Method Precision↑ Recall↑ TNR↑ FPR↓ F1 Score↑ AUC↑

LOF 0.4219 0.4821 0.9871 0.01292 0.45 0.8452
IF 0.4284 0.4896 0.9872 0.01277 0.4569 0.8882
iNNe 0.4297 0.4911 0.9873 0.01274 0.4583 0.8882
kNNo 0.3880 0.4435 0.9863 0.01368 0.4139 0.8209
CBLOF 0.4414 0.5045 0.9875 0.01248 0.4708 0.8796

a) Q1: Approach Performance: Table 2,3 show the average evaluation metric for

each method across all 96 window groups (4 houses * 24 window groups in each

house). Comparing five approaches on table 2, iNNe approach has best performance

on identifying Type I anomalies. CBLOF performs best for identifying Type II

anomalies. As we can see, IF and iNNe get similar performance on both table 2 and 3.

This can be explained that both iNNe and IF use the same isolation forest technique.

11



We also observe that all approaches only get around 40%-50% recall and precision.

This can be explained by that there is some potential anomalous consumption before

we inject artificial anomalies and we assume all the original consumption is normal

before our injection.

b) Q2: Importance of features: During the experiment, we test approaches’ per-

formance on different combinations of feature categories and report the averaged

AUC across all window groups. The result shows in table 4. As we can see, different

feature construction methods significantly affect the performance of approaches. For

example, by using the combination of statistic and descriptive features, the AUC

decrease around 0.2 comparing to FFT+PCA(3). Figure 5 shows how different feature

construction methods affect the data distribution of (06:00-07:00) window group in

House 370. In order to visualize the result, we reduce the dimensionality to 2. We

can observe that FFT feature construction method is more likely to locate anomalies

to low-density area.

Table 4: Average AUC for each method across all window groups on different feature
construction methods. The best result of each method is shown in bold.

Feature Construction LOF IF iNNe kNNo CBLOF

Origin 0.8906 0.8283 0.8282 0.8723 0.8476
FFT 0.9105 0.8815 0.8815 0.8994 0.8703
FFT+PCA(3) 0.9003 0.9118 0.9118 0.9160 0.9185
Statistic+Descriptive 0.7529 0.7430 0.7430 0.7556 0.6980
Statistic+Descriptive+PCA(3) 0.7504 0.7112 0.7112 0.7562 0.7317

c) Q3: Performance on different types of anomalies: Based on the metric scores

show in table 2,3, we can see all approaches have similar performance on identifying

Type I anomalies and Type II anomalies. It also suggests that current outlier detection

approaches are all possible to detect both point and contextual anomalies.
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Figure 5: Data distribution of (06:00-07:00) window group in House 370 by different
feature construction methods.

5 Conclusions

This paper compares the performance of different unsupervised anomaly detection

techniques on real-world residential power consumption data. It also investigates how

different feature construction methods affect the performance of anomaly detection

methods.

Two different types of anomaly are defined and injected into the data respectively

and used for evaluating different approaches. The result of experiment shows that

current outlier detection algorithms are possible to detect abnormal behaviour, but

requires further study.

There are multiple research directions for future work. First, we plan to investigate

overlapping windows instead of non-overlapping windows of one hour. Second, we will

also investigate if the addition of water consumption and weather data can improve

anomaly detection performance.
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